

Approval body for construction products
and types of construction

Bautechnisches Prifamt

An institution established by the Federal and
Laender Governments

* * *
* Designated
according to
Article 29 of Regula-
tion (EU) No 305/2011
and member of EOTA
(European Organi-
sation for Technical
Assessment)*

European Technical Assessment

ETA-11/0120
of 6 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the
European Technical Assessment:

Trade name of the construction product

Product family
to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment
contains

This European Technical Assessment is
issued in accordance with Regulation (EU)
No 305/2011, on the basis of

This version replaces

Deutsches Institut fur Bautechnik

SB headed studs made of steel

Headed studs cast-in and welded on steel plates made of
steel

Bolte GmbH
Flurstraße 25
58285 Gevelsberg
DEUTSCHLAND

Werk 1

Sold through

DABOTEK ApS
Birkedam 10 S
6000 Kolding
Denmark

15 pages including 3 annexes which form an integral
part of this assessment

EAD 330084-00-0601

ETA-11/0120 issued on 19 May 2016

European Technical Assessment

ETA-11/0120

English translation prepared by DIBt

Page 2 of 1516 July 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The SB headed studs welded on steel plates consist of steel.

The headed studs have a diameter of the shaft of 10, 13, 16, 19, 22 and 25 mm. At one end a head is formed by upsetting. The other end is prepared for drawn arc stud welding with ceramic ferrule or shielding gas (method 783 according to EN ISO 4063:2002-02).

The steel plates with welded on headed studs are embedded surface-flush in the concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex C1
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C2
Displacements (static and quasi-static loading)	see Annex C1 to C2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

European Technical Assessment

ETA-11/0120

English translation prepared by DIBt

Page 4 of 15 16 July 2018

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330084-00-0601, the applicable European legal act is: (96/582/EC).

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

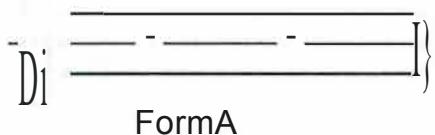
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 6 July 2018 by Deutsches Institut für Bautechnik

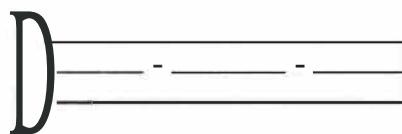
BD Dipl.-Ing. Andreas Kummerow
Head of Department

beglaubigt:
Muller

h = thickness of concrete member


SB headed studs made of steel

Product description
Installed condition


AnnexA1

Marking

Steel

Form A

Form B

Marking:
Manufacturer = SB

Table 1: Dimensions

Head ed stud typ	Shaft \varnothing d [mm]	Head \varnothing d_h [mm]	Nominal length		Thickness of the head t_h [mm]
			min l_n [mm]	max l_n [mm]	
10	10	19	50	200	7.1
13	13	25	50	400	8
16	16	32	50	525	8
19	19	32	75	525	10
22	22	35	75	525	10
25	25	41	75	525	12

SB headed studs made of steel

Product description
Headed studs dimensions and marking

AnnexA2

Table 2: Material steel

Part	Denomination	Material	Mechanical properties	Intended use
1	Headed stud according to EN ISO 13918:2008 Type SD1	Killed steel acc. material group 1 ISO/TR 15608 within limits according to EN ISO 13918:2008, Table 2 (for example S235J2+C450 according to EN10025:2005)	$f_{uk}= 450 \text{ N/mm}^2$ $f_k= 350 \text{ N/mm}^2$	Steel plates with welded an headed studs may only be used in structures subject to dry internal conditions
2	Steel plate	Steel S235JR; 5235JO; 5235J2 according to EN 10025:2005	$f_{uk}= 340-470 \text{ N/mm}^2$ $f_k= 255 \text{ N/mm}^2$	
		Steel 5355JO; 5355J2 according to EN 10025:2005	$f_{uk}= 510-680 \text{ N/mm}^2$ $f_k= 345 \text{ N/mm}^2$	

SB headed studs made of steel

Product description
Material

AnnexA3

Specifications of intended use

Loading of steel plate with cast-in anchors subject to:

- Static and quasi-static loads in tension and shear.

Base materials:

- Reinforced normal weight concrete according to EN 206-1 :2000
- Strength classes C20/25 to C90/105 according to EN 206-1 :2000
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions

Design:

- Steel plate with cast-in anchors are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchors are indicated on the design drawings (e.g. position of the anchor relative to the reinforcement or to supports).
- For static and quasi-static loading the steel plate with cast-in anchors are designed in accordance with CEN/TS 1992-4-2:2009.
- It is generally assumed that the concrete is cracked and that the occurring splitting forces are resisted by the reinforcement. The required cross section of the minimum reinforcement is determined according CEN/TS 1992-4-2:2009 section 6.2.6.2 b).

Installation:

Welding of the headed studs to the steel plate

- Steel plates, on which headed studs will be welded, consist of the materials S235JR, S235JO, S235J2, S355JO or S355J2 according to Annex A3, Table 2
- Headed studs shall be welded to the steel plate by means of drawn arc stud welding with ceramic ferrule or shielding gas in accordance with EN ISO 14555:2017
- Level of quality requirements corresponds to EN ISO 3834-3:2005
- Possibly not homogeneous structure of the steel plate (e.g. lamellar tearing/ lamellar imperfections) in the direction of the thickness are taken into account.
- Welding of the headed studs via arc stud welding may be performed in the manufacturing plant or on the construction site.
- For the welding of headed studs on the steel plate the executing company has a valid qualification for arc stud welding according EN ISO 14555:2017

SB headed studs made of steel

Intended use
Specifications

Annex B1

Placing steel plates into concrete

- The installation of headed studs is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the product only as supplied by the manufacturer.
- Installation in accordance with the manufacturer's specifications given in Annexes 84, 85 and 86.
- The anchorages are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the product will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the headed studs are properly compacted.
- For large fixtures (steel plate > 400 mm x 400 mm) vent openings are provided, specified in the design drawings.

SB headed studs made of steel

Intended use
Specifications

Annex 82

Table 3: Installation parameter for headed studs made of steel

Nominal size (mm)		10	13	16	19	22	25
anchorage depth	min h_{er} [mm]	50	50	50	75	75	75
minimum spacing	s_{min} [mm]	50	70	80	100	100	100
minimum edge distance	g_{min} [mm]	50	50	50	70	70	100
minimum thickness of concrete member	h_{min} [mm]				$h_{er} + th + C_{nom}^{1)}$		

¹⁾ C_{nom} = required concrete cover according to national regulations

Arrangement of headed studs

Regulations for the arrangement of headed studs on the plate are given in CEN/TS 1992-4-1 :2009, section 1.2.3.

SB headed studs made of steel

Intended use
Installation parameters

Annex 83

English translation prepared by 0/Bt

Fig 1: Simple headed stud

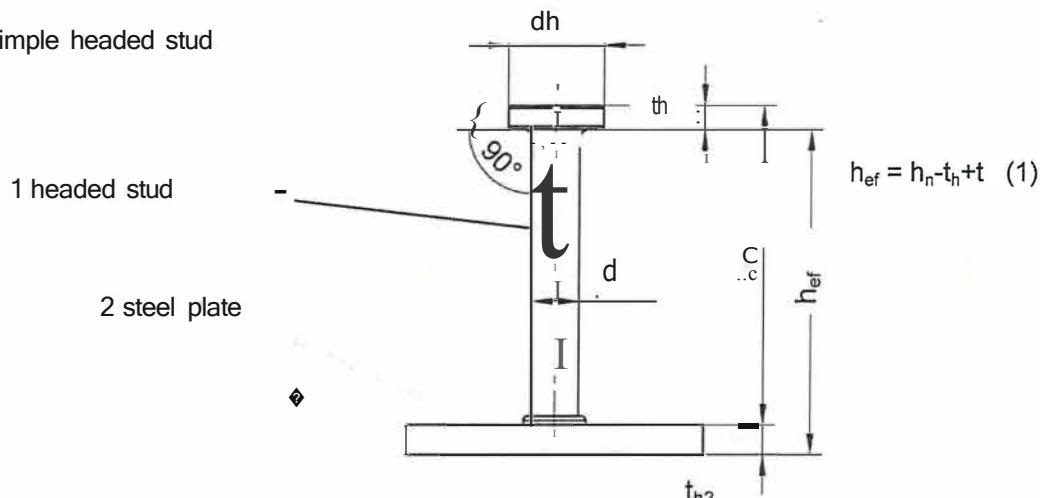


Fig 2: Doubled headed stud

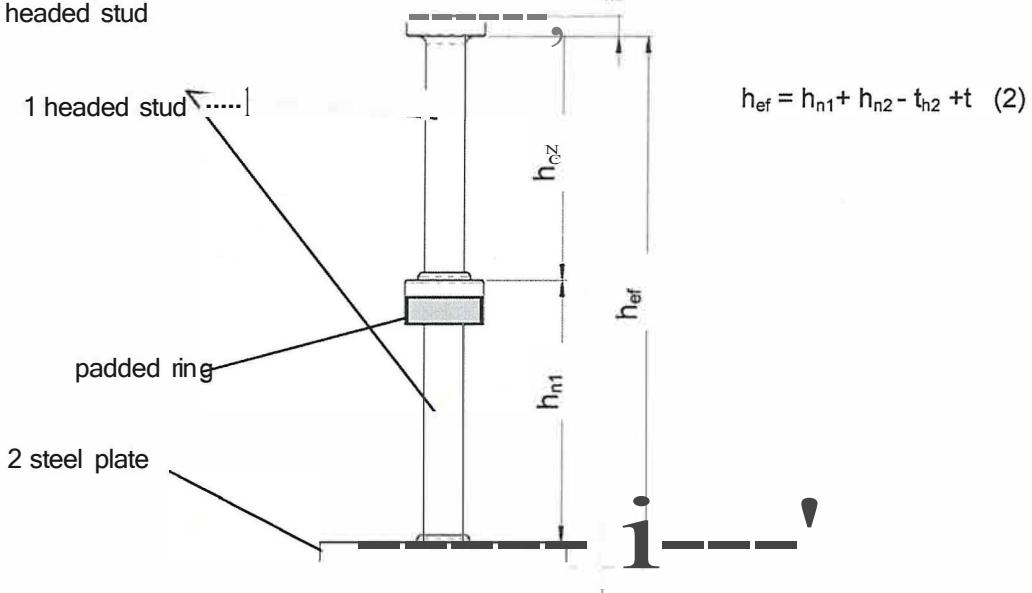
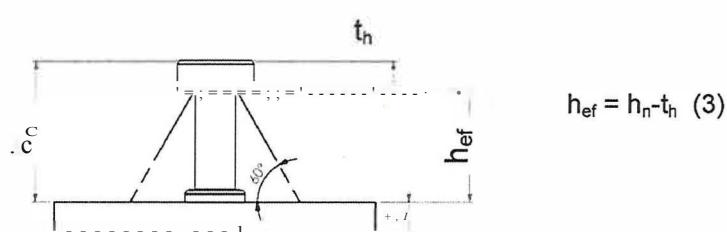



Fig 3: Short headed stud,
If the theoretic cone meets
the steel plate at an
angle of -60°

or $t \leq 0,2 h_n$

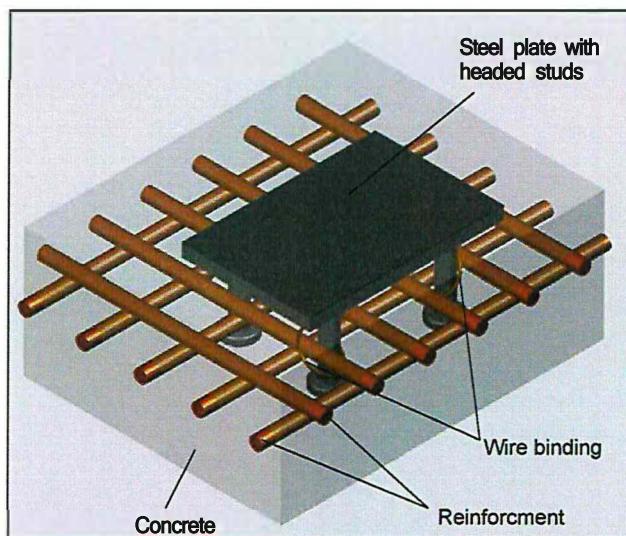
d =	diameter of shaft
d_h =	diameter of head
h_{ef} =	effective embedment depth
h_n =	nominal length of the headed stud (after welding)
t_h =	thickness of the head
t =	thickness of the steel plate
a =	90

SB headed studs made of steel


Intended use
Effective embedment depth

Annex B4

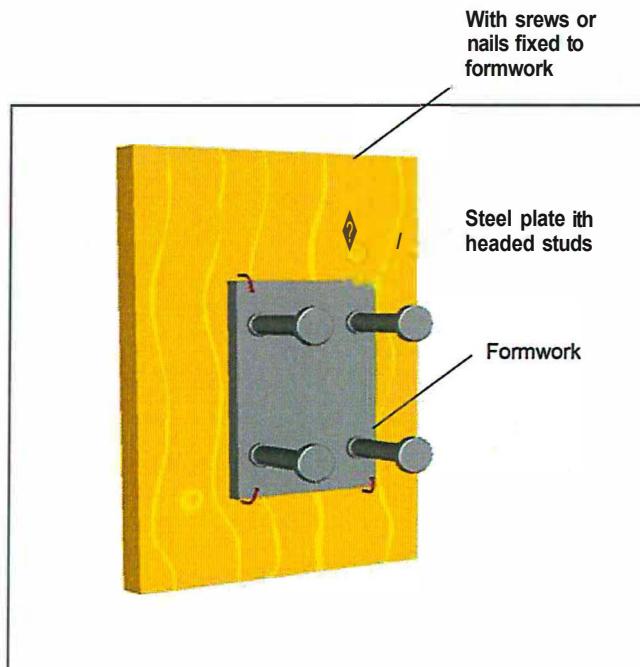
Installation instruction


1 Welding headed studs to steel plate

- Confect steel plate (material S235JR, S235JO, S235J2, S355JO or S355J2) acc. design drawings,
- Weld headed studs to steel plate acc. method 783 of EN ISO 4063 and at position acc. design drawings.

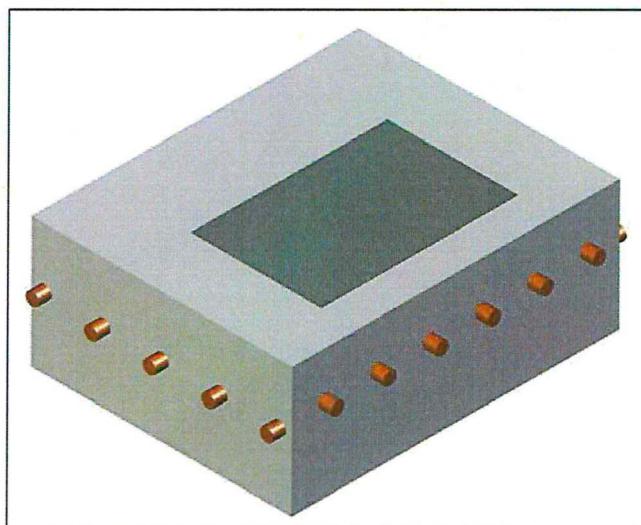
2 a Fixing steel plate to reinforcement

- Fix steel plate with headed studs directly to reinforcement or to mounting bar by wire binding,
- Fix in a way that steel plate does not move while pouring and compacting concrete,
- Orient steel plate surface-flush with the assumed concrete member.


SB headed studs made of steel

Intended use
Installation instructions

Annex 85


2 b Fixing steel plate to formwork

- Fix steel plate with headed studs directly to formwork by nails, screws or wire binding;
- Control close contact between steel plate and formwork;
- Fix in a way that steel plate does not move while pouring and compacting concrete.

3 Pouring concrete and compacting concrete

- Compact concrete properly around steel plate and headed studs.

SB headed studs made of steel

Intended use
Installation instructions

Annex 86

Table 4: Characteristic resistances under tension load

Headed stud - nominal size	10	13	16	19	22	25
Steel failure for headed studs made of steel						
Characteristic resistance	NR _{k,S} [kN]	35	60	91	128	171
Partial safety factor	Y _{Mb} ¹⁾			1,54		
Pull-out failure for cracked concrete						
Characteristic resistance	NR _{k,p} [kN]	30	50	90	75	85
Increasing factors β for the characteristic resistance	(25/30 (30/37 (35/45 (40/50 (45/55 CS0/60			1,20 1,48 1,80 2,00 2,20 2,40		
Partial safety factor	Y _{Mb} ¹⁾			1,5		
Concrete cone failure and splitting						
Effective anchorage depth	h _{e1} [mm]			h _n - t _h + t _l)		
factor to take into account the influence of load transfer mechanisms for cracked concrete	k _{er} [-]			8,5		
Characteristic spacing	S _{er,N} = S _{er,sp} ³⁾ [mm]			3 h _f		
Characteristic edge distance	C _{er,N} = C _{er,sp} ³⁾ [mm]			1,5 h _{er}		
Partial safety factor	Y _{Mb} ¹⁾			1,5		
Blow-out failure						
Partial safety factor	Y _{Mb} ¹⁾			1,5		

¹⁾ In absence of other national regulations

²⁾ For simple headed studs (for doubled headed studs resp. short headed studs see Fig.2 resp. 3, Annex 2)

³⁾ Reinforcement resists the splitting forces and limits the crack width to W_v > 0,3 mm

Table 5: Displacement under tension load

Headed stud - nominal size	10	13	16	19	22	25
Displacements $\delta_{No\ l}$ to 0,7 mm under following loads in [kN]	15	22	31	31	35	48

¹⁾ The indicated displacements are valid for short term loading, the displacements $\delta_{No\ l}$ can be increased under long term loading to 1,8 mm

SB headed studs made of steel

Performance data
Characteristic resistances and displacements under tension load

Annex C1

Table 6: Characteristic resistances under shear load

Headed studs - nominal size	10	13	16	19	22	25
Steel failure for headed studs made of steel						
Characteristic resistance	VR _{ks} [kN]	21	36	54	77	103
Partial safety factor	γ _{Ms} ¹⁾			1,29		
Concrete pry-out failure						
Factor in equation (32) according CEN/TS 1992-4.2:2009, section 6.3.4 without tensile reinforcement	k / l			2.0		
Partial safety factor	γ _{Mp} ¹⁾			1.5		
Concrete edge failure						
Effective length of the headed stud	r = h _r [mm]					
				h _n - t _h + t ³⁾ l		
Effective outside diameter	d _{cham} = d [mm]	10	13	16	19	22
Partial safety factor	γ _{Mc} ¹⁾			1.5		

1) In absence of other national regulations

2) In case of supplementary reinforcement the factor k₃ shall be multiplied by 0.75

3) For simple headed studs (for doubled headed studs resp. short headed studs see Fig. 2 resp. 3, Annex 2)

Table 7: Displacements under shear load

Headed studs - nominal size	10	13	16	19	22	25
Displacements Δ_{v0} ¹¹⁾ to 1.5 mm under following loads in [kN]	15	20	30	45	60	75

1) The indicated displacements are valid for short term loading, the displacements Δ_{v00} can be increased under long term loading to 2.0 mm

Combined tension and shear load

The factor k₇ according CEN/TS 1992-4.2:2009, section 6.4.1.3 is for combined tension and shear load

k₇ = 2/3

SB headed studs made of steel

Performance data

Characteristic resistances and displacements under shear load, combined tension and shear load

Annex C2